The NS4A Cofactor Dependent Enhancement of HCV NS3 Protease Activity Correlates with a 4D Geometrical Measure of the Catalytic Triad Region

نویسندگان

  • Hamzah A. Hamad
  • Jeremy Thurston
  • Thomas Teague
  • Edward Ackad
  • Mohammad S. Yousef
چکیده

We are developing a 4D computational methodology, based on 3D structure modeling and molecular dynamics simulation, to analyze the active site of HCV NS3 proteases, in relation to their catalytic activity. In our previous work, the 4D analyses of the interactions between the catalytic triad residues (His57, Asp81, and Ser139) yielded divergent, gradual and genotype-dependent, 4D conformational instability measures, which strongly correlate with the known disparate catalytic activities among genotypes. Here, the correlation of our 4D geometrical measure is extended to intra-genotypic alterations in NS3 protease activity, due to sequence variations in the NS4A activating cofactor. The correlation between the 4D measure and the enzymatic activity is qualitatively evident, which further validates our methodology, leading to the development of an accurate quantitative metric to predict protease activity in silico. The results suggest plausible "communication" pathways for conformational propagation from the activation subunit (the NS4A cofactor binding site) to the catalytic subunit (the catalytic triad). The results also strongly suggest that the well-sampled (via convergence quantification) structural dynamics are more connected to the divergent catalytic activity observed in HCV NS3 proteases than to rigid structures. The method could also be applicable to predict patients' responses to interferon therapy and better understand the innate interferon activation pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Virus-specific cofactor requirement and chimeric hepatitis C virus/GB virus B nonstructural protein 3.

GB virus B (GBV-B) is closely related to hepatitis C virus (HCV) and causes acute hepatitis in tamarins (Saguinus species), making it an attractive surrogate virus for in vivo testing of anti-HCV inhibitors in a small monkey model. It has been reported that the nonstructural protein 3 (NS3) serine protease of GBV-B shares similar substrate specificity with its counterpart in HCV. Authentic prot...

متن کامل

Differential requirements of NS4A for internal NS3 cleavage and polyprotein processing of hepatitis C virus.

The NS3 protein of hepatitis C virus (HCV) possesses protease activity responsible for the proteolytic cleavage of the viral polyprotein at the junctions of nonstructural proteins downstream of NS3. The NS3 protein was also found to be internally cleaved. In this study, we demonstrated that internal cleavages occurred on the NS3 protein of genotype 1b in the presence of NS4A, both in culture ce...

متن کامل

Polynucleotide modulation of the protease, nucleoside triphosphatase, and helicase activities of a hepatitis C virus NS3-NS4A complex isolated from transfected COS cells.

The hepatitis C virus (HCV) nonstructural 3 protein (NS3) is a 70-kDa multifunctional enzyme with three known catalytic activities segregated in two somewhat independent domains. The essential machinery of a serine protease is localized in the N-terminal one-third of the protein, and nucleoside triphosphatase (NTPase) and helicase activities reside in the remaining C-terminal region. NS4A is a ...

متن کامل

NS3 Protease from Hepatitis C Virus: Biophysical Studies on an Intrinsically Disordered Protein Domain

The nonstructural protein 3 (NS3) from the hepatitis C virus (HCV) is responsible for processing the non-structural region of the viral precursor polyprotein in infected hepatic cells. NS3 protease activity, located at the N-terminal domain, is a zinc-dependent serine protease. A zinc ion, required for the hydrolytic activity, has been considered as a structural metal ion essential for the stru...

متن کامل

A 3D structural model and dynamics of hepatitis C virus NS3/4A protease (genotype 4a, strain ED43) suggest conformational instability of the catalytic triad: implications in catalysis and drug resistivity

Egypt has the highest prevalence of hepatitis C virus (HCV) infection worldwide with a frequency of 15%. More than 90% of these infections are due to genotype 4, and the subtype 4a (HCV-4a) predominates. Moreover, due to the increased mobility of people, HCV-4a has recently spread to several European countries. The protease domain of the HCV nonstructural protein 3 (NS3) has been targeted for i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016